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The nucleation of a crack at the surface of a

circular cylindrical cavity

E. SMITH
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From the basis of a cohesive zone description, the paper formulates a criterion for the
nucleation of a crack at the surface of a circular cylindrical cavity in an infinite solid. The
criterion is expressed in terms of the internal pressure within the cavity, the stress system
in the absence of the cavity, the cavity size and the cohesive-zone material characteristics.
With attention being focussed on the situation where the cohesive-zone size at crack
nucleation is small compared with the cavity size, the nucleation criterion is expressed in a
particularly simple form. C© 1998 Kluwer Academic Publishers

1. Introduction
Tensile-type fracture at the surface of a cavity in a quasi-
brittle material is important with regard to fracture
events associated with boreholes, tunnels or mining-
related underground cavities. The classic Griffith the-
ory [1] can be applied to the propagation of a crack,
but this theory is not appropriate to the nucleation of a
tensile-type fracture at the surface of a cavity, which is
the subject matter of the paper’s considerations. With a
quasi-brittle material, it has been observed experimen-
tally that fracture nucleation involves the formation of
a damage zone that is able to grow stably until cohesion
is completely lost within the zone (at the cavity surface
in the cavity situation).

The simplest way of representing the damage zone
is to use the cohesive zone description, whereby a sin-
gle infinitesimally thin two-dimensional cohesive zone
starts to form at the cavity surface when the tensile
stress at the surface attains some critical value pc, and
as the loadings increase, the zone spreads away from the
surface. The zone can be characterised by a material-
specific relation between the tensile stress (p) acting
across the zone and the relative displacement (v) be-
tween the zone faces, withp being a maximum (with
valuepc) at the leading edge of the cohesive zone. The
stressp decreases as the displacementv increases and
p falls to zero at the trailing edge of the zone when
the displacementv attains a critical valuevc. There is
then a complete loss of cohesion and crack nucleation
is said to occur. It is possible to quantify the nucleation
event for any prescribed cohesive zone softening law
using numerical methods (see for example the work of
Hashida and co-workers [2] on granite).

However, to simplify the considerations so that we
can use analytical procedures—thereby allowing us to
clearly see the interplay between material, geometri-
cal and stress parameters,—it will be assumed that
the stressp within the cohesive zone remains con-
stant at the valuepc until the displacementv attains
the critical valuevc whenp is assumed to fall abruptly

from pc to zero. This is the classic DBCS (Dugdale-
Bilby-Cottrell-Swinden) representation [3, 4] that is
frequently used to model stress-relaxation phenomena.
When this representation is applied to the cavity prob-
lem, crack nucleation occurs when the displacementvT
at the trailing edge of the cohesive zone, i.e. the cavity
surface, attains the critical valuevc.

The cohesive-zone description, coupled with the
DBCS representation, is used in this paper to quantify
crack nucleation at the surface of a cavity, with attention
being focussed on the situation where the cohesive-zone
size at crack nucleation is small compared with the cav-
ity size, since this allows the nucleation criterion to be
expressed in a particularly simple form.

2. Theoretical analysis
Fig. 1 shows the model of an infinite solid, subjected to
external stressesp11=−σ1 and p22=−σ2. This solid
contains a circular cylindrical cavity of radiusa and
with its axis in the three o’clock direction, the internal
pressure within the cavity beingpI . There are cohesive
zones, within which the tensile stress ispc. They em-
anate from the cavity surface at the three o’clock and
nine o’clock positions. It is assumed either that these are
positions of maximum circumferential tensile stress at
the cavity surface, or that planes of weakness coincide
with these positions.

The stress distribution in the absence of the cohesive
zones is given by expressions due to Kinch [5] and
reported recently by Atkinson and Thiercelin [6]. The
circumferential tensile stress at the cavity surface is
given by the expression

pθθ (r = a) = −(σ1+ σ2)+ 2(σ1− σ2) cos 2θ + pI

(1)

and it is immediately seen that, withσ1>σ2 and withσ1
andσ2 both assumed to be positive, the circumferential
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Figure 1 The model of a circular cylindrical cavity in an infinite solid.

tensile stress at the cavity surface is a maximum (with
value σ2− 3σ1+ pI ) at the three o’clock and nine
o’clock positions and fracture will be favoured at these
positions if there is no other preferential plane of weak-
ness. The tensile stressp22 along the planex2= 0 at a
distancex ahead of the cavity surface is given by the
expression

p22(x) = − (σ1+ σ2)

2

[
1+ a2

(a+ x)2

]

+ (σ1− σ2)

2

[
1+ 3a4

(a+ x)4

]
+ pIa2

(a+ x)2

(2)

which, upon expansion to the first two terms in powers
of x/a, becomes

p22(x) = (σ1− 3σ2+ pI )− (5σ1− 7σ2+ 2pI )
x

a
(3)

= σL − σG
x

a
(4)

with σL = (σ1− 3σ2+ pI ) being the local stress at the
cavity surface andσG= (5σ1− 7σ2+ 2pI ) being asso-
ciated with the stress gradient in the immediate vicinity
of the cavity surface.

Intuitively, we expect that if crack nucleation occurs
under conditions where the cohesive-zone size is small
compared with the cavity radius, then this situation can
be simulated in terms of a cohesive zone emanating
from the planar surface of a semi-infinite solid, with
the “applied stress” distribution being the linear-stress
distribution immediately ahead of the actual cavity sur-
face; the viability of this approach has been vindicated
elsewhere [7]. Thus, consider the situation where a co-
hesive zone emanates from the planar surface of a semi-
infinite solid (Fig. 2). It is assumed that the tensile stress
along the planeX2= 0 in the absence of the cohesive
zone is given by expression (4), withx being measured
from X1= 0 along theX1 axis; this stress simulates
the tensile stress ahead of the cavity surface. Ifs is
the cohesive zone size, the condition for finiteness of
stress (=pc) at the leading edge of the cohesive zone

Figure 2 The planar-surface model.

within which the tensile stress has the uniform valuepc,
is [8]

1.12(σL − pc)− 2.14σGs

πa
= 0 (5)

while the relative displacement (crack nucleation) con-
dition atx = 0, i.e.vT = vc, is given by the relation

vc = 5.83s(σL − pc)

Eo
− 1.77s2σG

Eoa
(6)

whereEo= E/(1− v2), E being Young’s modulus and
v being Poisson’s ratio. In relations (5) and (6),σL and
σG are given by the expressionsσL = (σ1− 3σ2 + pI )
and σG= (5σ1− 7σ2+ 2pI ) - see the comments after
relation (4). Elimination ofs between relations (5) and
(6) gives

Eovc

pca
= 4.79(σL − pc)2

σG pc
(7)

while the cohesive-zone sizes at crack nucleation is
given by relation (5) as

s

a
= 1.64(σL − pc)

σG
(8)

Now, with the DBCS representation of a cohesive zone,
the fracture toughnessKIC associated with the exten-
sion of a crack under LEFM conditions is given by the
expression

KIC = [Eo pcvc]
1/2 (9)

whereupon relation (7) can be written as

K 2
IC

p2
ca
= 4.79(σL − pc)2

σG pc
(10)

and this is the crack-nucleation criterion. Because
the derivation of the criterion has been based on the
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“applied” stress distribution in the immediate vicinity
of the cavity surface, relation (10) is applicable only for
the case where the cohesive zone size is small compared
with the cavity radius, i.e. s/a is small or (see relations
(8) and (10)) (σL − pc) is small compared withpc, and
so K 2

IC/p2
ca is small.

Let us now consider special cases. First of all consider
the case where the external stresses areσ1= σ2= σ .
The cavity is internally pressurized, and there is a plane
of weakness along the 1 axis so that fracture occurs
preferentially along this plane. For this situation, not-
ing thatσL is then equal to (pI − 2σ ), σG is equal to
2(pI − σ ) and that the nucleation theory is valid for
small (σL − pc), the nucleation criterion (10) shows
that crack nucleation occurs when the internal pressure
in the cavity is raised to a value given by the expression

pI

pc
= 1+ 2σ

pc
+ 0.65KIC

pca1/2

[
σ

pc
+ 1

]1/2

(11)

This expression clearly highlights the limitations of a
simple strength criterion for crack nucleation, which
would beσL = (pI − 2σ ) = pc or

pI

pc
= 1+ 2σ

pc
(12)

because of the existence of the cavity size dependent
term in relation (11). This term stems from the stress
gradient ahead of the cavity surface and is responsible
for a strengthening effect, which becomes more promi-
nent as the cavity size decreases. Relation (11) also
highlights the beneficial effect of the confining pres-
sureσ with regard to crack nucleation; thus the rela-
tion shows thatpI increases asσ increases, a result
which is not surprising and is consistent with both the
numerical predictions and granite experimental results
obtained by Hashida and co-workers [2].

Now consider the case where the external stresses
areσ1= σ andσ2= 0, and there is no internal pressure
within the cavity. For this situation,σL is equal toσ
andσG is equal to 5σ . Again noting that this paper’s
crack-nucleation theory applies to the situation where
(σL − pc) is small, the nucleation criterion (10) shows
that crack nucleation occurs when the applied stressσ

attains a value which is given by the expression

σ

pc
= 1+ 1.02KIC

pca1/2
(13)

As with the first case, this expression also highlights the
limitations of the simple strength criterion for crack
nucleation, which would beσL = σ = pc; the differ-
ence between relation (13) andσL = pc is again due
to the existence of the cavity-size dependent term in re-
lation (13), which again is due to the stress-gradient ef-
fect. Relation (13) clearly shows that the applied stress
σ required for crack nucleation increases as the cav-
ity size decreases, a prediction that is in accord with
experimental results on rock-like materials obtained by

Lajtai and co-workers [9, 10], who refer to a fracture
parallel to the loading axis as a primary fracture.

3. Discussion
On the basis of an idealised DBCS cohesive-zone de-
scription for a quasi-brittle material, the paper has for-
mulated a very simple criterion (relation (10)) for the
nucleation of a crack at the surface of a circular cylin-
drical cavity in an infinite solid. A planar surface simu-
lation procedure has been used to facilitate the analysis,
and consequently the theory is strictly applicable only
to the situation where the cohesive-zone size at crack
nucleation is small compared with the cavity size. The
crack-nucleation criterion is expressed in terms of the
internal pressure within the cavity, the stress system
in the absence of the cavity, the cavity size and the
cohesive-zone material characteristics.

Since the nucleation criterion has been expressed in
a particularly simple form, it is easy to see how these
various factors input into the nucleation criterion. For
example it is easy to see how they are responsible for a
flaw-strengthening effect, whereby the effective failure
stress at the cavity surface is greater than the tensile
fracture stress of the cohesive material, and how the
degree of strengthening is affected by the stress gradi-
ent ahead of the cavity surface and hence its size, and
also the applied-stress system. This importance of the
stress gradient has been recognized by other workers,
for example by Lajtai and co-workers [9].

Before closing this discussion, it is worth mentioning
that although this paper has been concerned with the
modelling of the behavior of a quasi-brittle material
in a situation where there is a “tensile”-cohesive zone,
similar considerations will also be relevant to situations
where there is a “compressive” zone, i.e., failure due
to a compressive circumferential stress at the cavity
surface, referred to as a slabbing fracture.
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